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Approximate solutions to two-level transition and surface-ion 
neutralisation problems 
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U K  
f Department of Mathematics, University of Nottingham, Nottingham NG7 2RD, UK 

Received 30 March 1989 

Abstract. Approximate analytical solutions for the dynamical variation of a two-level 
system with a time-dependent pulse potential are introduced. These approximations are 
based on the replacement of the potential by a series of step functions and, in principle, 
can be as accurate as required. The method is extended to many-level transition problems 
such as those which arise in the theory of surface-ion neutralisation 

1. Introduction 

The dynamics of a two-level system coupled by an external time-dependent field is a 
problem which has been of importance for at least 50 years (Rosen and Zenner 1932) 
and in which there has been a considerable revival of interest recently. 

The problem can be described by the two equations 

_- - -i V (  t )  e+'a, da2 - -i V ( t )  eia 'a2 da1 
d t  d t  
_- 

where a ,  = 1 and a2 = 0 as t + --CO and where V (  t )  is a pulse potential. By the term 
pulse potential we mean a real, non-negative, sectionally continuous function which, 
for large Ill, decreases monotonically to zero, and for which 

m I-, V (  t )  d t  <-CO. 

These equations arise in any semiclassical two-state calculation coupled by such a 
potential and in two-state quantum problems in which the levels are coupled by a 
nearly resonant oscillating field so that the anti-resonant component can be neglected. 

It is possible to treat the two-state problem numerically using standard techniques 
for solving systems of differential equations such as Runge-Kutta or predictor-corrector 
methods. However, interest has also been shown in analytical solutions by many 
authors including Bambini and Berman (1981), Robinson and Berman (1983), Bambini 
and Lindberg (1984), Robinson (1984, 1985a, 1985b), Hioe (1984), Carroll and Hioe 
(1986). In general, the class of pulses considered analytically is restricted, and most 
of the solutions are for pulses which are symmetric with respect to the origin, although 
recently a few calculations have been made for non-symmetric pulses. Furthermore, 
the solutions are given in terms of hypergeometric functions and, in 
most cases, further analysis is necessary to examine the shape and magnitude of the 
probability amplitudes a ,  and a 2 .  
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Equations (1) can be generalised to an n-level problem. One particular example 
of current interest is in the theory of surface-ion neutralisation ( S I N ) .  For a review 
and references see Amos et a1 (1989). Experimentally, a positive ion is scattered from 
a solid surface and, in the process, may gain an electron from the solid, thus becoming 
neutralised. Theoretically this can be modelled using an Anderson-Newns Hamiltonian 
within the Hartree or Hartree-Fock approximation (Blandin et a1 1976, Bloss and 
Hone 1978). This leads to a one-electron Schrodinger equation for the molecular 
orbitals I+,( t ) )  of the system with a time-dependent one-electron Hamiltonian of the 
form: 

z(t) = &O(O)(O/+ &klXk)(Xkl+ 1 VkV(t)(lO)(XkI+lXk)(Ol) (3 1 
k = l  h = l  

where IO) and e, are the vacant orbital and orbital energy of the incoming ion, 1xL) 
and &k ( k  = 1, .  . . , n )  are the initial states and energy levels of the solid band with 
which the ion interacts. The final term in (3) is the interaction potential, which involves 
terms such as u k v (  t ) ,  representing the interaction between 10) and IXk), which is assumed 
to be the product of a constant uk, depending on IXk)  and a time-dependent potential 
V( t )  independent of IXk). The exact form of V( t )  is not known precisely but, since it 
should increase from zero to a maximum as the ion approaches the surface and then 
fall away to zero again as the ion is scattered, it should be a pulse-like potential and 
should satisfy (2).  

Writing the molecular orbital in the form 
n 

W,(t))= ao,(t) e-''o'lO)+ C ak,(t) e-'k'Ixk) (4) 

and substituting into the time-dpendent Schrodinger equation leads to the set of 
equations (Davison et a1 1986, Amos et a1 1989) 

k = l  

n 

cio,(t) = -i 1 UkV(t) eIwk'ukJ(t) 

U!,,( t )  = -iukV( t )  e-'WL'aO,( t )  (5) 

a,,(-a?)=O ak,(-o;)) = (6) 

k = l  

k = l  . . .  n 

where @k = eo- &I, and subject to the initial conditions 

Equations (5) and (6) are generalised forms of (1). The quantity of interest is the 
probability of neutralisation which, allowing for spin, is given by 

where p is the number of doubly occupied orbitals. There have been many papers 
which have estimated the value of P for various systems and have considered its 
dependence on such physical parameters as the ion's speed and the bandwidth of the 
solid. However, although there have been a few attempts to calculate P(c0)  by solving 
( 5 )  numerically (Muda and Hanawa 1980, McDowell 1982, Grimley et a1 1983, Sulston 
et a1 1988a) in the main, theoretical treatments of the problem has relied on making 
various approximations (Blandin et a1 1976, Bloss and Hone 1978, Brako and Newns 
1981, Sulston et a1 1988b). 
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In this paper, we describe how a particular set of approximate solutions to (1) and 
( 5 )  can be found for any pulse potential V( t )  satisfying ( 2 ) .  These approximate 
solutions are obtained by considering a set of N subintervals {[t,-l,  t , ] ,  n = 1 , .  . . , N }  
within each of which V (  t )  is replaced by a constant potential A,,, so that the equation 
of motion becomes very simple. Consequently, the solutions are expressed in terms 
of sinusoidal functions in the various intervals and so the approximation is actually 
the composition of a number of analytic solutions valid in these intervals. The 
composite solution is forced to be continuous by imposing this as a requirement at 
t = t ,  for all n, but the derivatives change discontinuously at these division points in 
most examples. As we shall show, at least for the two-level case, it is an almost trivial 
exercise to obtain these approximate solutions, and the algorithm can be used on the 
simplest microcomputer. Since, within each interval, the solution has analytic form, 
we believe the method we describe has both qualitative and quantitative advantages. 

2. The analytic approximation 

We first discuss how we approximate V(t) .  Equation (2)  implies that to within any 
given error E we can find a T such that V( t )  may be ignored in It1 > T. For It1 < T we 
use a series of N step functions, and so we write 

with to = - T and t N  = T and where U( t , )  is the Heaviside step function, which is zero 
for t < t, and  unity for t a t,. A method of solving the time-independent Schrodinger 
equation for bound-state problems, by approximating a scalar potential in a similar 
way, has been introduced by Canosa and  de  Oliviera (1970). Our assumption is that, 
by suitable choice of T and the parameters { t,, A,}, the error I V (  t )  - Q( t ) i  can be made 
as small as desired. In practice, we wish to use as few intervals as possible and, for 
the two-level problem, a maximum of 24 are used. The { t , } ,  which define these, were 
chosen so that there was a fairly uniform change in I V( t n + l )  - V( r,)i for all n. The A, 
were taken to be the mean values? of V( t )  in the interval, i.e. 

since they are the minimum values of 
I,, + I 

C(A)=[l , ,  ( A - V ( t ) ) * d t .  

For the cases we have examined, this seemed to lead to a quite satisfactory approxima- 
tion to V (  t ) ,  but other criteria may be better for different pulse shapes. Note, however, 
that to ensure convergence as the number of intervals is increased, we require 

min V ( t ) c A ,  S max V ( t )  
[ fu, f n  + I 1  [ f , , .  f,,*,l 

which is, of course, satisfied by (9). 

+ Numerical approximations to these will suffice when their exact values are not expressible in terms of 
elementary functions. 
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Turning now to the equations of motion ( l ) ,  we introduce the substitutions 

a,  = 4 ,  eta''? a, = cbZ e-1ar/* 

so that, in matrix form, the equations become 

4(t) = -iA(t)+(t)  

with 

where 42 = 0 and qbI = exp(-iiat) as t + -a. Thus we take 4 2 ( - T )  = 0 and 

C$,( - T )  = cos 4aT + i sin 4aT. 

Similarly, equations (5) can be put in the form of (13) with 

' ( t )  - U ,  . . . 

v , V ( t )  0 , . .  
We now approximate V ( t )  by the series of step functions as in (8), so that in the 

4 ( t )  = - iAr4  (16) 
where A, is obtained by replacing V(r) in A by A,, so that A, is a constant matrix. 
The solution of (16) is 

subinterval [ t , ,  f r + l ] ,  (13) becomes 

4( t )  =exp[-iA,(t- t r ) 1 4 ( t n )  (17) 
where 4(tn) is obtained from the solution in the previous subinterval [ r n - l ,  t , ] .  
Therefore, 

A more useful form for computation is 

where D, is the diagonal matrix whose j th  element is 

eXP[-iVrJ(fr+l - t r ) l  

where the { vrJ}  are the eigenvalues of A, and the columns of U, are the corresponding 
eigenvectors. 

Standard techniques in the theory of linear differential equations (see, for example, 
Cesari 1963, Coddington and Levinson 1955) can be used to show that 4(rN) will 
tend to the exact solution ~ ( o o )  as the difference between the approximate and real 
potential tends to zero, the error being related to the modulus of this difference 
integrated over (-00, 00). Consequently, increasing the number of intervals will 
decrease the overall error, and so the method is inherently stable. We note that any 
phase errors arising from the approximation are unimportant since the quantities of 
physical interest involve moduli only. 
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3. The two-level problem 

To illustrate the method we consider two examples of a two-level problem. Firstly we 
use the Lorentzian pulse 

A 1  
V (  t )  =- - 

7T 1 + t 2  

with a =0.1, which has been investigated by a number of authors. We take T =20 
and N = 23 to represent the pulse in the step-function form of (8), the division points 
{ t , }  being listed in table 1. Applying (18), we can then obtain values for l&(T)12, 
which corresponds to the probability that at t =a, the system has transferred to the 
state originally unoccupied. These values are compared in table 1 with numerical 
results obtained by Yeh and Berman (quoted in Robinson 1984) and with accurate 
Runge-Kutta numerical results. The agreement between the numerical results and our 
results is very satisfactory. 

We now consider the example of the non-symmetric pulse 

0.1 e*' t < O  

Io.1 e-'' t Z O  
V (  t )  = 

when a = 1. The pulse V (  t )  is small so that we have truncated by ignoring V (  t )  for 
I t i >  2 = T. In table 2 we list the values of the real and imaginary parts p ,  and p 2 ,  q1 
and q2 of 4, and 42 at t = 2 obtained using the 10, 6 and 4 points given in the table. 
These points were chosen, as in the last example, to give a uniformly small variation 

Table 1. Example calculations for Lorentzian pulses with various values of A.  The points 
used are 120, -10, 15, i3, i2, i1.25, 11.0, -0.8, 10.6, i0.5, 10.4 and 10.2. 

0.1 T 0.079 0.077 0.078 
0 . 5 ~  0.920 0.91 1 0.919 
l r  0.034 0.050 0.040 
1 . 5 ~  0.747 0.680 0.734 

t Yeh and Berman, as quoted in Robinson (1984). 
$ Obtained using 1600 points in the interval [-20, 201. 

Table 2. The non-symmetric pulse calculationst. 

Runge-Kutta calculation 
Ten-point11 Six-point5 Four-point$ 
calculation calculation calculation 200 points 1200 points 4000 points 

p , ( 2 )  0.540 0.540 0.540 0.531 0.538 0.540 
q,(2) -0.841 -0.841 -0.841 -0.846 -0.846 -0.841 
p2(2) 0.030 0.028 0.022 0.031 0.030 0.030 
q,(2) -0.018 -0.015 -0.01 1 -0.018 -0.018 -0.018 

t All values are given correct to three decimal places. 
$ The points used are *2, 10.1. 
0 The points used are 12, 10.1 and *0.25. 
1 1  The points used are 1 2 ,  10.1, 20.25, 10.8 and *0.05. 
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in V( t )  from a tabulation of values of V( 1). Thus, for example, using four points in 
It (  < 2  gives three intervals for which the variation is approximately 0.05. The number 
of points can be increased using this strategy so that the difference between the 
approximate and correct potential becomes as small as is felt necessary. Our results 
are compared with Runge-Kutta values using 200, 1200 and 4000 equally spaced points 
in Itl<2. 

The table illustrates how convergence can be tested by increasing the number of 
intervals used. The slow convergence of the Runge-Kutta method is almost certainly 
due to the fact that the points used are evenly spaced, whereas for a pulse potential 
the density of points should be larger near the peak of the pulse. Clearly a numerical 
method can be constructed with this feature, but the simple analytical approximation 
used here suffices. 

We wish to point out that the approximate analytical solutions obtained in this 
way d o  have a particularly simple form. As an illustration of this, we can write the 
solution in the interval [-0.1, -0.051 for the 10-point calculation as 

bl +e- lg ' t+o  I '  b2 ( 2 2 )  4(  t )  = e l ~ ( f + O  IJ 

where p = 0.5047 and - p  are the eigenvalues of A, and b ,  and b, are constant vectors 
related to the eigenvectors of A3 and + ( - O . l ) .  

We note that the analytical solutions are continuous at the interval points but not 
differentiable. This is not a serious disadvantage, however, since we are free to choose 
the data points arbitrarily so that approximations to the derivatives can be obtained 
at any point. 

We now examine the accuracy of the approximations. Equation (13) may be written 
in the form of integral equations 

41(t)  = -i J:= e - l - [ I - x J ' 2  V(x)&( x )  d x  + e-'""? 

4>( t )  = -i 
(23) 

ela'r-'1/2 V ( x ) 4 , ( x )  dx. 

Now, the definition of V( t )  implies that for any given error E we can find - TI such that 

Consequently, since ( x ) (  s 1 

V(x)&(x) d x /  < E f o r t < - T I , k = 1 o r 2  (25) 

which shows that truncation is always possible for any given tolerance and a similar 
argument shows that, for t > T > T, , 

I 4 k ( t ) - - h ( T ) l < &  k = l , 2 .  (26) 
The last result implies that we can always estimate the asymptotic values to any given 
accuracy (using 4 k (  T) = $bk(m)). Furthermore, whatever definition of integration is 
used (Riemann or Lebesgue), by choosing maxlt,,,, - t,,I sufficiently small and A,, 
satisfying (6), we can ensure that 

I V - p / d t < E  (27)  
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for Bny given error E. This shows that in principle it is always possible to replace V 
by V in (8) or (23), with the consequent errors in 41 and & being as small as required. 

4. A many-level system: SIN 

The potential function most frequently used in theoretical treatments of S I N  problems 
is 

v(t) = v0 e-p" (28) 

where Vo and p are constants. The constant p is proportional to the speed of the ion 
and values of about 0.1-0.2 au correspond to slow ions with larger values around 10 au 
corresponding to fast ions. Values used for Vo tend to be in the range 0.25-1.0 au. 

It should be stressed that the exact form of V (  t )  is not precisely known. Equation 
(28) is used because it has the overall shape and properties intuitively expected of the 
correct potential. In view of the highly approximate nature of the potential used, 
detailed quantitative results have little validity and the major interest is the qualitative 
behaviour of the neutralisation probability P(co),  obtained from the solutions of (15) 
via (7) .  

To approximate V( t )  by c( t ) ,  as in (8), we use N subintervals ( N  odd) symmetri- 
cally placed with respect to the origin so that t o , .  . . , t ( N - l l , 2  are negative, and t ,  = 
- t N - , .  Thus ? ( t )  will be an even function of t .  We take to= -T, with T to be 
determined, and t ,  = p-'  log( 1 - 2 n /  N + 1 )  ( n  = 1, . . . , +( N - 1)). This ensures that, in 
all subintervals except the extreme outer intervals and the central one, V( t )  increases 
or decreases by the same amount. We have examined other choices for the {t,}, but 
have found none which prove better overall for a range of values of the parameters. 
The A, are chosen as in ( 9 ) .  An analysis of the error in the fit, as measured by ( l o ) ,  
for the interval [ t l ,  fN-l], shows that it is O ( p - ' N - * ) .  Thus, for large values of p (fast 
ions), a reasonable fit can be found with a small number of intervals, whereas for 
smaller values of p a larger number of intervals may be required. 

We now consider the asymptotic regions, t < f1  and f > f N - ' .  When N >  1, we 
choose to= -T, t N  = T and A o =  A N  with 

so as to preserve the asymptotic area under the curve and 

so as to preserve the area under the square of V ( t )  in the asymptotic region. This 
leads to the values A N  = V o / N + l  and T = ~ ~ - ~ + 2 p - ' .  For N = 1 ,  A l  = Vo/2  and 
T = 2 p - l .  Consequently the error in fitting V( t )  to V (  t )  in the asymptotic region as 
measured by 

J 

will be O ( p - ' N - * ) ,  just as for the central region [ t l ,  t N - l ] .  
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With the choices described above, all the {A;} turn out to be independent of p and, 
therefore, so do the matrices A, in (16). This leads to a considerable simplification if 
neutralisation probabilities have to be computed for a range of values for p, because 
the eigenvectors and eigenvalues of A,, used to form the matrices in (19), have to be 
computed once and once only. 

The term resonant charge transfer is usually applied to S I N  processes in which the 
solid band is wide and the energy of the valence orbital of the scattered ion is close 
to or actually lies within the energy band of the solid. Quasi-resonance is applied to 
the case where the participating band is narrow, such as the core band of a metal or 
the valence band of an alkali halide solid, and where the energy of the valence orbital 
lies outside the band. We now present two sets of calculations to illustrate the use of 
our method for both of these situations. 

We follow most authors in this area by modelling the solid as a tight-binding 
one-dimensional array of M atoms with tight-binding parameters CY and p. We take 
CY = -0.1 au and use two values for /3, /3 = -0.125 au and /3 = -0.0125 au. Since the 
band width is 41/31, the former choice of /3 corresponds to a wide band (resonant charge 
transfer) and the latter to a narrow band (quasi-resonant charge transfer). We use 
Vo = 0.5 au for the interactive strength and, for the valence level of the ion, = -0.2 au 
so that in the wide-band case it lies within the band, while for the narrow-band 
quasi-resonant case it lies well below the band. Numerical calculations using the 
Runge-Kutta-Merson method have been made for these systems and can be regarded 
as effectively exact values for comparison. 

Firstly we demonstrate that our method can give values in agreement with the 
'exact' Runge-Kutta-Merson values provided N, the number of intervals used in (8), 
is taken large enough. This is shown in tables 3 and 4. The number of intervals 
required depends significantly on the parameter p - ' ,  as would be expected. For p- '  
small (fast ions) rather few intervals are needed, but to get accurate values when p- '  
is large (slow ions) as many as 200 have to be used. However, even for slow ions, 
qualitiatively reasonable results are obtained for N = 19. 

Table 3. Effect on neutralisation probability of number of intervals (narrow-band case). 

Calculated values of P ( 7) 

I*-' N = 7  N = l l  N = 1 9  N = 199 value P(*) 
Runge- Kutta- Merson 

- 0.693 1 0.694 - - 
3 0.025 0.027 0.029 - 0.032 

10 0.267 0.076 0.015 0.035 0.036 

Table 4. Effect on neutralisation probability of increasing of intervals (wide-band case), 

Calculated values of P ( T )  
Runge- Kutta- Merson 

N = l l  N = 199 value P ( c c )  P- '  N = 7  
~~ 

- 0.681 1 0.682 - 
5 0.784 0.799 0.790 0.790 

10 0.92 1 0.902 0.875 0.876 
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The calculations reported in tables 3 and 4 assumed a chain of 20 atoms ( M  = 20) 
was sufficient to represent the solid. This assumption is tested in table 5, and it is clear 
that even with M = 10 quite satisfactory results are obtained. Thus large values of M 
are not required to give a good representation of the band. In table 5 we consider 
also the case M = 1. Since this can be regarded as taking the limit /3 = 0, it is not 
surprising that the M = 1 results cannot be applied to the wide band, but clearly do 
correspond to the narrow band. What is surprising is that, for the narrow band, taking 
M = 1 gives remarkably good results. 

Obviously the smaller the values used for M and N, the faster and more efficient 
is our numerical method. It seems worthwhile, therefore, to examine how well the 
results given by using small values of these parameters compare qualitatively with the 
‘exact’ results based on the exponential. However, it turns out to be necessary to treat 
narrow bands and wide bands quite differently. 

In order to obtain results with the correct qualitative behaviour for a wide band, 
we find it is necessary to take reasonably large values of M so as to give a good 
representation of the band. A suitable choice for M depends not only on the band 
width but, also, and we stress this point, on the value of p. For /3 = -0.125 and p in 
the range 0.1-1.0, M = 20 is certainly sufficient but, for smaller values of p, M should 
be increased. Therefore, for wide bands, we have only the option of using small values 
of N to produce a fast and efficient numerical procedure. To examine whether this 
can provide sufficiently accurate results, we have made calculations with N = 1 and 
N = 3, in both cases taking M = 20. In table 6, the results are compared with ‘exact’ 
numerical values. 

Table 5. Effect on neutralisation probability of increasing number of states M (with N = 3). 

Narrow band Wide band 
M = l  

C C - ‘  M = l O  M = 20 M = l O  M = 2 0  

1 0.695 0.696 0.683 0.681 0.696 
3 0.0 19 0.0 18 0.599 0.597 0.010 

10 0.742 0.743 0.925 0.924 0.729 

Table 6. Ionisation probabilities for the wide-band case with M = 20. 

Calculated values of P( 7) 
Runge- Kutta- Merson 

w- ’  N = l  N = 3  value P(m)  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.690 
0.862 
0.588 
0.93 1 
0.657 
0.722 
0.876 
0.568 
0.852 
0.736 

0.681 
0.873 
0.597 
0.803 
0.752 
0.796 
0.850 
0.886 
0.918 
0.924 

0.680 
0.882 
0.538 
0.733 
0.790 
0.678 
0.757 
0.846 
0.852 
0.876 
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The table shows that, initially, there is a fairly precise fit of both N = 1 and N = 3 
to the numerical results. However, only the N = 3 approximation gives a good qualita- 
tive fit as p decreases. Both the ‘exact’ results and  the N = 3  case give an initial 
oscillation followed by values approaching 1 as p decreases. This is to be expected 
on the basis of the wide-band approximation used by many authors. 

As we pointed out earlier, the exact form of the interaction potential for the S I N  

process is not known and  the exponential most often used is just a qualitative approxi- 
mation to it. Consequently, the purpose of calculations based on (28) is simply to 
establish the qualitative behaviour of the neutralisation probability as a function of 
the parameters of the system, particularly ion speed as represented by the parameter 
p. Some attempts have been made to use simpler potentials, in particular a constant 
potential in an  interval about t = 0 with zero potential outside the interval; in effect 
this is our  method with N = 1. However, table 6 shows that this gives unreliable results. 
Fortunately the case N = 3, which is almost as simple, does give results in good 
qualitative agreement with those based on the exponential function. Since the results 
with N = 3  are quick and  easy to obtain, it would seem advantageous in future S I N  

calculations of scattering from wide bands to replace the exponential potential by the 
N = 3 approximation to it. 

For the narrow band, we find almost the exact opposite of the wide-band con- 
clusions. It appears, as is suggested by table 5 ,  that a small value of M, even as small 
as M = 1 when the problem becomes a two-level one, is usually sufficient. O n  the 
other hand, quite large values of N are sometimes needed to obtain the correct 
qualitative behaviour, particularly when p is small. This is shown in table 7, where 
results for M = 1 and several choices for N are listed and compared with ‘exact’ 
numerical results obtained for M = 20. For large p, all the calculations are in reasonable 
agreement, but for small p it is highly inadvisable to attempt to use low values for N, 
since only with N = 19 and  N = 99 are results obtained comparable to the ‘exact’ ones. 

Table 7. Neutralisation probabilities for the narrow-band case with M = 1 and various N 
values. 

Calculated values of P( T )  

/ . - I  N = 3  N = 5  N = l l  N = 1 9  N =99 value P ( m ) f  

1.57 0.955 0.954 0.954 0.954 0.955 0.956 
3.14 0.001 0.000 0.000 0.000 0.000 0.009 
4.71 0.69 1 0.601 0.553 0.554 0.577 0.590 
6.28 0.063 0.045 0.008 0.000 0.000 0.010 
7.85 0.630 0.350 0.187 0.192 0.282 0.3 19 
9.42 0.208 0.231 0.040 0.000 0.005 0.008 

f Computed with M = 20. 

Runge-Kutta-Merson 

The neutralisation probabilities in table 7 are computed for p-l equal to multiples 
of 4~ where the Rosen-Zener approximation (Amos et a1 1986) suggests P(m) has 
alternating maxima and  minima ( P ( m )  = 0). This is more or  less the case with the 
‘exact’ results, which clearly show oscillatory behaviour with the amplitude of the 
oscillations decreasing with increasing p - ’ .  The same properties are found for the 
N = 19 and  N =99  results, but those for small values of N d o  not reproduce the 
correct qualitative behaviour. 
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